Portfolio Optimizer can be used:
- As an anonymous user
- As an authenticated user
Let be:
- $n$, the number of assets
- $T$, the number of time periods
- $P_{t,i} \in \mathbb{R}^{+,*}$, the price of the asset $i$ at the time $t$, $i=1..n$, $t=1..T$
The arithmetic return $r_{t+1,i}$ of the asset $i$, $i=1..n$, over the period from the time $t$ to the time $t+1$, $t=1..T-1$, is defined as $$r_{t+1,i} = \frac{P_{t+1,i} - P_{t,i}}{P_{t,i}}$$
Let be:
- $n$, the number of assets
- $T$, the number of time periods
- $r_i = (r_{1,i},...,r_{T,i}) \in \mathbb{R}^{T}$, the arithmetic returns of the asset $i$, $i=1..n$ over each time period $t=1..T$
The average arithmetic return $\overline{r_i}$ of the $i$-th asset, $i=1..n$, is defined as the the arithmetic average of the arithmetic returns $r_i$: $$ \overline{r_i} = \frac{1}{T} \sum_{t=1}^{T} r_{t,i} $$
Let be:
- $n$, the number of assets
- $T$, the number of time periods
- $r_i = (r_{1,i},...,r_{T,i}) \in \mathbb{R}^{T}$, the arithmetic return of the asset $i$, $i=1..n$ over each time period $t=1..T$
- $\overline{r} = \left ( \overline{r_1}, ..., \overline{r_n} \right ) \in \mathbb{R}^n$, the average arithmetic return of the assets $1..n$
The asset covariance matrix $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$ is defined by: $$\Sigma_{i,j} = \frac{1}{T} \sum_{k=1}^T (r_{k,i} - \overline{r_i}) (r_{k,j} - \overline{r_j}), i=1..n, j=1..n$$
Alternatively, let be:
- $n$, the number of assets
- $C \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset correlation matrix
- $\sigma_1,...,\sigma_n$, the asset standard deviations (i.e., volatilities)
- $\sigma_1^2,...,\sigma_n^2$, the asset variances
The asset covariance matrix $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$ is defined by: $$\Sigma_{i,j} = \sigma_i \sigma_j C_{i,j}, i=1..n, j=1..n$$
Let be:
- $n$, the number of assets
- $T$, the number of time periods
- $r_i = (r_{1,i},...,r_{T,i}) \in \mathbb{R}^{T}$, the arithmetic return of the asset $i$, $i=1..n$ over each time period $t=1..T$
- $\overline{r} = \left ( \overline{r_1}, ..., \overline{r_n} \right ) \in \mathbb{R}^n$, the average arithmetic return of the assets $1..n$
- $\lambda \in ]0,1[$ the decay factor
The exponentially weighted asset covariance matrix $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$ is defined by: $$\Sigma_{i,j} = \frac{1 - \lambda}{1 - \lambda^{T}} \sum_{k=0}^{T-1} \lambda^{k} (r_{T-k,i} - \overline{r_i}) (r_{T-k,j} - \overline{r_j}), i=1..n, j=1..n$$
Notes:
- The decay factor $\lambda$ determines the weights applied to the returns, as well as the effective amount of time periods used in computing the covariance matrix
- The decay factor $\lambda$ can also be defined in terms of the half-life $\tau$, which is the time taken by the weights to decay by $\frac{1}{2}$, through the relationship
$$\tau = -\frac{\ln 2}{\ln \lambda} \Leftrightarrow \lambda = \left ( \frac{1}{2} \right )^{\frac{1}{\tau}} $$
Let $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$ be a matrix.
$\Sigma$ is an asset covariance matrix if and only if:
- $\Sigma$ is symmetric, i.e. $\Sigma {}^t = \Sigma$
- $\Sigma$ is positive semi-definite, i.e. $x {}^t \Sigma x \geqslant 0, \forall x \in\mathbb{R}^n$
Let be:
- $n$, the number of assets
- $T$, the number of time periods
- $r_i = (r_{1,i},...,r_{T,i}) \in \mathbb{R}^{T}$, the arithmetic return of the asset $i$, $i=1..n$ over each time period $t=1..T$
- $\overline{r} = \left ( \overline{r_1}, ..., \overline{r_n} \right ) \in \mathbb{R}^n$, the average arithmetic return of the assets $1..n$
- $\sigma_1,...,\sigma_n$, the asset standard deviations (i.e., volatilities)
The asset correlation matrix $C \in \mathcal{M}(\mathbb{R}^{n \times n})$ is defined by: $$C_{i,j} = \frac{1}{T} \sum_{k=1}^T \frac{(r_{k,i} - \overline{r_i}) (r_{k,j} - \overline{r_j})}{\sigma_i \sigma_j}, i=1..n, j=1..n$$
Alternatively, let be:
- $n$, the number of assets
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $\sigma_1,...,\sigma_n$, the asset standard deviations (i.e., volatilities)
The asset correlation matrix $C \in \mathcal{M}(\mathbb{R}^{n \times n})$ is defined by: $$C_{i,j} = \frac{\Sigma_{i,j}}{\sigma_i \sigma_j}, i=1..n, j=1..n$$
Let $C \in \mathcal{M}(\mathbb{R}^{n \times n})$ be a matrix.
$C$ is an asset correlation matrix if and only if:
- $C$ is symmetric, i.e. $C {}^t = C $
- $C$ is unit diagonal, i.e. $C_{i,i} = 1, i=1..n $
- $C$ is positive semi-definite, i.e. $x {}^t C x \geqslant 0, \forall x \in\mathbb{R}^n$
Let $n$ be the number of assets and $A \in \mathcal{M} \left( \mathbb{R}^{n \times n} \right)$ be an approximate asset correlation matrix (i.e., a matrix with no specific requirements)
Let be:
- $\delta \in [0,1]$
- $S_n^\delta = \{ X \in \mathcal{M} \left( \mathbb{R}^{n \times n} \right)$ such that $X {}^t = X$ and $\lambda_{min}(X) \geq \delta \}$
- $\mathcal{N}$ the optional (so, possibly empty) index set of the fixed off-diagonal elements of the approximate correlation matrix $A$
- $\mathcal{E}_n = \{ X \in \mathcal{M} \left( \mathbb{R}^{n \times n} \right)$ such that $X {}^t = X$ and $x_{ii} = 1, i = 1,...,n$ and $x_{ij}=a_{ij}$ for $(i,j) \in \mathcal{N} \}$
The nearest correlation matrix $C$ to the matrix $A$ is the solution of the problem:
$$ C = \operatorname{argmin} \left\Vert X - A \right\Vert_F \text{ s.t. } X \in S_n^\delta \cap \mathcal{E}_n $$
Notes:
- The algorithm used internally to solve the optimization problem above is an alternating projection algorithm, similar to the algorithm described in the reference, with $\delta$ taken of order $10^{-4}$
to ensure that the computed correlation matrix $C$ is positive definite.
- If the set $\mathcal{N}$ is not empty, the optimization problem above might not have any solution, which will typically manifest by a response time out of the endpoint.
Let be:
- $n$, the number of assets
- $T$, the number of time periods
- $P_{t,i} \in \mathbb{R}^{+,*}$, the price of the asset $i$ at the time $t$, $i=1..n$, $t=1..T$
Additionally, let be:
- $n_p$, the number of portfolios to simulate
- $w_{p} \in [0,1]^{n}$, the vector of the initial portfolio weights of the $p$-th portfolio to simulate, $p=1..n_p$, with $\sum_{i=1}^{n} w_{p,i} = 1$
- $V_{t, p} \in \mathbb{R}^{+,*}$, the value of the $p$-th portfolio to simulate at the time $t$, $p=1..n_p$, $t=1..T$
Then, for $p=1..n_p$ and $t=1..T$ : $$ V_{t, p} = V_{1, p} \sum_{i=1}^{n} w_{p,i} \frac{P_{t,i}}{P_{1,i}}$$
Notes:
- By convention, $V_{1, p} = 100, p = 1..n_p$
Let be:
- $n$, the number of assets
- $T$, the number of time periods
- $P_{t,i} \in \mathbb{R}^{+,*}$, the price of the asset $i$ at the time $t$, $i=1..n$, $t=1..T$
Additionally, let be:
- $n_p$, the number of portfolios to simulate
- $w_{p} \in [0,1]^{n}$, the vector of the fixed portfolio weights of the $p$-th portfolio to simulate, $p=1..n_p$, with $\sum_{i=1}^{n} w_{p,i} = 1$
- $V_{t, p} \in \mathbb{R}^{+,*}$, the value of the $p$-th portfolio to simulate at the time $t$, $p=1..n_p$, $t=1..T$
Then, for $p=1..n_p$ and $t=2..T$ : $$ V_{t, p} = V_{t-1, p} \sum_{i=1}^{n} w_{p,i} \frac{P_{t,i}}{P_{t-1,i}}$$
Notes:
- By convention, $V_{1, p} = 100, p = 1..n_p$
Let be:
- $n$, the number of assets
- $T$, the number of time periods
- $P_{t,i} \in \mathbb{R}^{+,*}$, the price of the asset $i$ at the time $t$, $i=1..n$, $t=1..T$
Additionally, let be:
- $n_p$, the number of portfolios to simulate
- $V_{t, p} \in \mathbb{R}^{+,*}$, the value of the $p$-th portfolio to simulate at the time $t$, $p=1..n_p$, $t=1..T$
Then, for $p=1..n_p$ and $t=2..T $: $$ V_{t, p} = V_{t-1, p} \sum_{i=1}^{n} w_{t-1,p,i} \frac{P_{t,i}}{P_{t-1,i}} $$
with $w_{t, p} \in [0,1]^{n}$ the vector of the $p$-th portfolio weights at the time $t$, $p=1..n_p$, $t=1..T$, generated at random and satisfying: $$ \begin{cases} 0 \leqslant w_{t,p,i} \leqslant 1, i = 1..n \newline \sum_{i=1}^{n} w_{t,p,i} = 1 \end{cases} $$
Notes:
- By convention, $V_{1, p} = 100, p = 1..n_p$
Let be:
- $n$, the number of assets
- $\mu \in \mathbb{R}^{n}$, the vector of the asset arithmetic returns
- $n_p$, the number of portfolios
- $w_p \in [0,1]^{n}$, the vector of portfolio weights of the $p$-th portfolio, $p=1..n_p$
The arithmetic return of the $p$-th portfolio, $p=1..n_p$, is defined as: $$ \mu {}^t w_p $$
Alternatively, let be:
- $n$, the number of assets
- $n_p$, the number of portfolios
- $T_p$, the number of time periods of the $p$-th portfolio, $p=1..n_p$
- $V_{t, p} \in \mathbb{R}^{+,*}$, the value of the $p$-th portfolio at the time $t$, $p=1..n_p$, $t=1..T_p$
The arithmetic return of the $p$-th portfolio, $p=1..n_p$, is defined as:$$ \frac{V_{T_p,p} - V_{1,p}}{V_{1,p}}$$
Let be:
- $n$, the number of assets
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $n_p$, the number of portfolios
- $w_p \in [0,1]^{n}$, the vector of portfolio weights of the $p$-th portfolio, $p=1..n_p$
The volatility $\sigma_p$ of the $p$-th portfolio, $p=1..n_p$, is defined as: $$ \sigma_p = \sqrt{ w_p {}^t \Sigma w_p} $$
Alternatively, let be:
- $n_p$, the number of portfolios
- $T_p$, the number of time periods of the $p$-th portfolio, $p=1..n_p$
- $r_p = (r_{p,1},...,r_{p,T_p-1}) \in \mathbb{R}^{T_p-1}$, the arithmetic returns of the portfolio $p$ associated to the $T_p$ time periods, $p=1..n_p$
The volatility $\sigma_p$ of the $p$-th portfolio, $p=1..n_p$, is defined as the standard deviation of the arithmetic returns $r_p$: $$ \sigma_p = \sqrt{\frac{\sum_{t=1}^{T_p-1} (r_{p,t} - \overline{r_p}) }{T_p-1}} $$
With $\overline{r_p}$ the average arithmetic return of the $p$-th portfolio.
Let be:
- $n$, the number of assets
- $\mu \in \mathbb{R}^{n}$, the vector of the asset arithmetic returns
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $r_f \in \mathbb{R}$, the value of the risk free rate
- $n_p$, the number of portfolios
- $w_p \in [0,1]^{n}$, the vector of portfolio weights of the $p$-th portfolio, $p=1..n_p$
The Sharpe ratio of the $p$-th portfolio, $p=1..n_p$, is defined as: $$ \frac{ \mu{}^t w_p - r_f}{\sqrt{ w_p {}^t \Sigma w_p }} $$
Alternatively, let be:
- $r_f \in \mathbb{R}$, the value of the risk free rate
- $n_p$, the number of portfolios
- $T_p$, the number of time periods of the $p$-th portfolio, $p=1..n_p$
- $V_{t, p} \in \mathbb{R}^{+,*}$, the value of the $p$-th portfolio at the time $t$, $p=1..n_p$, $t=1..T_p$
- $\overline{r_p}$, the average arithmetic return of the $p$-th portfolio, $p=1..n_p$
- $\sigma_p$, the volatility of the $p$-th portfolio, $p=1..n_p$
The Sharpe ratio of the $p$-th portfolio, $p=1..n_p$, is defined as: $$ \frac{\overline{r_p} - r_f}{\sigma_p} $$
Let be:
- $n$, the number of assets
- $\sigma = (\sigma_1,...,\sigma_n)$ the vector of the assets volatilities
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $n_p$, the number of portfolios
- $w_p \in [0,1]^{n}$, the vector of portfolio weights of the $p$-th portfolio, $p=1..n_p$
The Diversification ratio of the $p$-th portfolio $p=1..n_p$, is defined as: $$ \frac{ \sigma{}^t w_p}{\sqrt{ w_p {}^t \Sigma w_p }} $$
Let be:
- $n$, the number of assets
- $\mu \in \mathbb{R}^{n}$, the vector of the asset arithmetic returns
- $n_p$, the number of portfolios
- $w_p \in [0,1]^{n}$, the vector of portfolio weights of the $p$-th portfolio, $p=1..n_p$
The return contribution of the $i$-th asset to the return of the $p$-th portfolio, $i=1..n$ and $p=1..n_p$, is defined as: $$ w_{p,i} \mu_i $$
Additionally, let be:
- $n_k$, the optional number of groups of assets
- $\mathcal{N}_1,...,\mathcal{N}_{n_k}$ the optional $n_k$ groups of assets
The return contribution of the group of assets $\mathcal{N}_k$ to the return of the $p$-th portfolio, $k=1..n_k$ and $p=1..n_p$, is defined as: $$ \sum_{j \in \mathcal{N}_k} w_{p,j} \mu_j $$
Notes:
- Return contribution analysis is also known as absolute return attribution analysis, because there is no reference to a benchmark
- In contribution analysis, a group of assets is also known as a segment, and is usually made of assets sharing common characteristics such as the asset class, the country, the industrial sector, etc.
Let be:
- $n$, the number of assets
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $n_p$, the number of portfolios
- $w_p \in [0,1]^{n}$, the vector of portfolio weights of the $p$-th portfolio, $p=1..n_p$
The risk contribution of the $i$-th asset to the risk of the $p$-th portfolio, $i=1..n$ and $p=1..n_p$, is defined as: $$ w_{p,i} \frac{(\Sigma w_p)_i}{\sqrt{w_p {}^t \Sigma w_p}} $$
Additionally, let be:
- $n_k$, the optional number of groups of assets
- $\mathcal{N}_1,...,\mathcal{N}_{n_k}$ the optional $n_k$ groups of assets
The risk contribution of the group of assets $\mathcal{N}_k$ to the risk of the $p$-th portfolio, $k=1..n_k$ and $p=1..n_p$, is defined as: $$ \sum_{j \in \mathcal{N}_k} w_{p,j} \frac{(\Sigma w_p)_j}{\sqrt{w_p {}^t \Sigma w_p}} $$
Notes:
- The risk is defined in terms of standard deviation of the returns (i.e., volatility)
- In contribution analysis, a group of assets is also known as a segment, and is usually made of assets sharing common characteristics such as the asset class, the country, the industrial sector, etc.
Let be:
- $n$, the number of assets
- $\mu \in \mathbb{R}^{n}$, the vector of the asset arithmetic returns
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
The continuous mean-variance efficient frontier is the (infinite) set of portfolios whose weights $w \in [0,1]^{n}$ satisfy: $$ w = \operatorname{argmin} \frac{1}{2} w {}^t \Sigma w - \lambda \mu {}^t w \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$
with $\lambda$ a parameter varying in $[0, +\infty[$.
Additionally, let be:
- $n_p$, the number of portfolios to compute on the mean-variance efficient frontier
The discretized mean-variance efficient frontier is the (finite) set of $n_p$ portfolios belonging to the continuous mean-variance efficient frontier with equally spaced arithmetic returns.
Notes:
- The parameter $1/\lambda$ is usually called the risk aversion parameter
- When no group weights constraints are present, and if numerically possible, the algorithm used internally to solve the linearly constrained quadratic optimization problem above is the Critical Line Method from Harry_Markowitz
Let be:
- $n$, the number of assets
- $\mu \in \mathbb{R}^{n}$, the vector of the asset arithmetic returns
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
The continuous mean-variance minimum variance frontier is the (infinite) set of portfolios whose weights $w \in [0,1]^{n}$ satisfy: $$ w = \operatorname{argmin} \frac{1}{2} w {}^t \Sigma w - \lambda \mu {}^t w \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$
with $\lambda$ a parameter varying in $]-\infty, +\infty[$.
Additionally, let be:
- $n_p$, the number of portfolios to compute on the mean-variance minimum variance frontier
The discretized mean-variance minimum variance frontier is the (finite) set of $n_p$ portfolios belonging to the continuous mean-variance minimum variance frontier with equally spaced arithmetic returns.
Notes:
- The parameter $1/\lambda$ is usually called the risk aversion parameter
- When no group weights constraints are present, and if numerically possible, the algorithm used internally to solve the linearly constrained quadratic optimization problem above is the Critical Line Method from Harry_Markowitz
Let be:
- $n$, the number of assets
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
Additionally, let be:
- $n_p$, the number of portfolios to construct
The $p$ vectors of portfolio weights $w_p \in [0,1]^{n}$, $p=1..n_p$, are generated at random and satisfy: $$ \begin{cases} l \leqslant w_p \leqslant u \newline w_{min} \leqslant \sum_{i=1}^{n} w_{p,i} \leqslant w_{max} \end{cases} $$
Let be:
- $n$, the number of assets
- $T$, the number of time periods
- $X \in \mathcal{R}^{n \times T}$, the matrix of the assets returns
- $r_b \in \mathbb{R}^{T}$, the returns of the benchmark
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
The mimicking portfolio weights $w \in [0,1]^{n}$ satisfy: $$ w = \operatorname{argmin} \frac{1}{T} \lVert w {}^t X - r_b \rVert_2^2 \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$
Notes:
- The performance measure that is being minimized above is called the empirical tracking error
- The statistical technique used to construct the mimicking portfolio is called returns-based style analysis
Let be:
- $n$, the number of assets
The equal-weighted portfolio weights $w \in [0,1]^{n}$ satisfy: $$ w_i = \frac{1}{n}, i=1..n$$
Let be:
- $n$, the number of assets
- $\sigma_1^2,...,\sigma_n^2$, the assets variances
The inverse variance-weighted portfolio weights $w \in [0,1]^{n}$ satisfy: $$ w_i = \frac{1/\sigma_i^2}{\sum_{j=1}^{n} 1/\sigma_j^2}, i=1..n$$
Let be:
- $n$, the number of assets
- $\sigma_1,...,\sigma_n$, the assets volatilities
The inverse volatility-weighted portfolio weights $w \in [0,1]^{n}$ satisfy: $$ w_i = \frac{1/\sigma_i}{\sum_{j=1}^{n} 1/\sigma_j}, i=1..n$$
Notes:
- The inverse volatility-weighted portfolio is also known as the naive-risk parity portfolio
Let be:
- $n$, the number of assets
- $mktcap_1,...,mktcap_n$ the assets market capitalizations
The market capitalization-weighted portfolio weights $w \in [0,1]^{n}$ satisfy: $$ w_i = \frac{mktcap_i}{\sum_{j=1}^{n} mktcap_j}, i=1..n$$
Let be:
- $n$, the number of assets
- $\mu \in \mathbb{R}^{n}$, the vector of the asset arithmetic returns
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $r_f \in \mathbb{R}$, the value of the risk free rate
The equal Sharpe ratio contributions portfolio weights $w \in [0,1]^{n}$ satisfy:
- $\forall i,j$ such that $\mu_i - r_f > 0$ and $\mu_j - r_f > 0$ $$ w_i \frac{\mu_i - r_f}{\sqrt{ w {}^t \Sigma w}} = w_j \frac{\mu_j - r_f}{\sqrt{ w {}^t \Sigma w}} $$
- $\forall i$ such that $\mu_i - r_f \leq 0$ $$ w_i = 0 $$
Let be:
- $n$, the number of assets
- $\mu \in \mathbb{R}^{n}$, the vector of the asset arithmetic returns
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
The maximum return portfolio weights $w^* \in [0,1]^{n}$ satisfy:
$$ w^* = \operatorname{argmax} w {}^t \mu \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$
Notes:
- If some assets have identical returns, the maximum return portfolio will usually not be unique
-
If some assets have identical returns, the maximum return portfolio will usually not be mean-variance efficient
To enforce mean-variance efficiency, the covariance matrix of the assets $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$ must be provided
Let be:
- $n$, the number of assets
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
The minimum variance portfolio weights $w^* \in [0,1]^{n}$ satisfy:
$$ w^* = \operatorname{argmin} w {}^t \Sigma w \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$
Notes:
- If the asset covariance matrix is not positive definite, the minimum variance portfolio will usually not be unique
-
If the asset covariance matrix is not positive definite, the minimum variance portfolio will usually not be mean-variance efficient
To enforce mean-variance efficiency, the arithmetic returns of the assets $\mu \in \mathbb{R}^{n}$ must be provided
Let be:
- $n$, the number of assets
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
The equal risk contributions portfolio weights $w^* \in [0,1]^{n}$ satisfy:
$$ w^* = \operatorname{argmin} \sqrt{ w {}^t \Sigma w} - \frac{\lambda}{n} \sum_{i=1}^{n} \ln(w_i) \newline \textrm{s.t. }l \leqslant w \leqslant u $$
with $\lambda \in \mathbb{R}^{+,*}$ a parameter to be determined such that $\sum_{i=1}^{n} w_i = 1$.
Notes:
- Such a $\lambda$ might not exist, in which case the optimization problem is not feasible and the vector $w$ is undefined
- The algorithm used internally to solve the optimization problem above is a cyclical coordinate descent algorithm, similar to the algorithm described in the reference
Let be:
- $n$, the number of assets
- $C \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset correlation matrix
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
The maximum decorrelation portfolio weights $w^* \in [0,1]^{n}$ satisfy:
$$ w^* = \operatorname{argmax} 1 - w {}^t C w \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$
Let be:
- $n$, the number of assets
- $\mu \in \mathbb{R}^{n}$, the vector of the asset arithmetic returns
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $r_f \in \mathbb{R}$, the value of the risk free rate
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
The maximum Sharpe ratio portfolio weights $w^* \in [0,1]^{n}$ satisfy:
$$ w^* = \operatorname{argmax} \frac{w {}^t \mu - r_f }{\sqrt{ w {}^t \Sigma w}} \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$
Notes:
- The value of the risk free rate $r_f$ is usually either taken as the interest rate on a riskless asset like cash or as the interest rate on borrowings
- The maximum Sharpe ratio portfolio is mean-variance efficient
Let be:
- $n$, the number of assets
- $C \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset correlation matrix
- $\sigma_1,...,\sigma_n$, the assets volatilities
The minimum correlation portfolio is a portfolio where the assets are weighted proportionally to their average correlation with each other.
In more details:
- The correlation matrix of the assets $C$ is converted to an adjusted correlation matrix $C'$ that does not have negative values, penalizing high correlation and rewarding low correlation
- The assets that act as portfolio diversifiers are then initially weighted more heavily than the others, using the adjusted correlation matrix $C'$
- The initial weights are then normalized by the assets inverse volatilities $1/\sigma_i, i=1..n$, to ensure that each asset contributes to the same level of portfolio risk
Let be:
- $n$, the number of assets
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
The most diversified portfolio weights $w^* \in [0,1]^{n}$ satisfy:
$$ w^* = \operatorname{argmax} \frac{w {}^t \sigma }{\sqrt{ w {}^t \Sigma w}} \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$
Let be:
- $n$, the number of assets
- $\mu \in \mathbb{R}^{n}$, the vector of the asset arithmetic returns
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
A mean-variance efficient portfolio is a portfolio whose weights $w^* \in [0,1]^{n}$ satisfy:
$$ \exists \lambda \in [0, +\infty[, w^* = \operatorname{argmin} \frac{1}{2} w {}^t \Sigma w - \lambda \mu {}^t w \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$
The parameter $\lambda$ is usually called the risk tolerance parameter, and is determined by an additional constraint on the portfolio:
- A return constraint $r_c$, in which case $\lambda$, if it exists, is determined such that the portfolio has a return equal to $r_c$
- A volatility constraint $v_c \geq 0$, in which case $\lambda$, if it exists, is determined such that the portfolio has a volatility equal to $v_c$
- A risk tolerance constraint $\lambda_c \geq 0$, in which case $\lambda$ always exist and is equal to $\lambda_c$
Notes:
- The parameter $1/\lambda$ is usually called the risk aversion parameter
- When no group weights constraints are present, and if numerically possible, the algorithm used internally to solve the linearly constrained quadratic optimization problem above is the Critical Line Method from Harry_Markowitz
Let be:
- $n$, the number of assets
- $w_t \in [0,1]^{n}$, the desired portfolio weights, with $\sum_{i=1}^{n} w_{t,i} = 1$
- $TV$, the desired portfolio monetary value
- $P_1,...,P_n$, the prices of the assets $1,...,n$
- $nl_1,...,nl_n$, the number of shares by which to purchase the assets $1,...,n$
- $ml_1,...,ml_n$, the minimum number of shares to purchase for the assets $1,...,n$
- $mv_1,...,mv_n$, the minimum monetary amount to purchase for the assets $1,...,n$
The investable portfolio weights $w \in [0,1]^{n}$ closest to the desired portfolio weights $w_t$ satisfy: $$ w = \operatorname{argmin} \frac{1}{2} \lVert w - w_t \rVert_2^2 \newline \textrm{s.t. } \begin{cases} \sum_{i=1}^{n} w_i \leq 1 \newline w_i = \frac{k_i nl_i P_i}{TV}, k_i \in \mathbb{N}, i=1,...,n \newline k_i \neq 0 \implies k_i nl_i \geq ml_i, i=1,...,n \newline k_i \neq 0 \implies k_i nl_i P_i \geq mv_i, i=1,...,n \end{cases} $$
Unfortunately, the above optimization problem is computationally intractable due to the integer constraints, so that it is only possible to compute an approximate solution.
Notes:
- In case the desired portfolio weights $w_t$ do not satisfy $\sum_{i=1}^{n} w_{t,i} = 1$, the optimization problem above is reformulated to try to best accommodate the situation
- In case at least one group of assets is present, the investable portfolio weights $w \in [0,1]^{n}$ satisfy a more complex optimization problem than above,
additionally involving:
- An assets groups matrix that identifies the membership of each asset within each assets group
- The desired portfolio groups weights
- The desired portfolio maximum groups weights
- In case at least one group of assets is present and the desired asset weights, assets groups weights and maximum assets groups weights are incompatible, the optimization problem above is reformulated to try to best accommodate the situation
Let be:
- $T$, the number of time periods
- $r_b = (r_{b,1},...,r_{b,T}) \in \mathbb{R}^{T}$, the returns of the benchmark
- $n_p$, the number of portfolios
- $r_p = (r_{p,1},...,r_{p,T}) \in \mathbb{R}^{T}$, the returns of the portfolio $p$, $p=1..n_p$
The tracking error of the $p$-th portfolio, $p=1..n_p$, is defined as the volatility of
the difference of the returns of the portfolio and of the returns of the benchmark over the $T$ time periods: $$ \sqrt{\frac{\sum_{t=1}^{T} (r_{b,t} - r_{p,t})^2 }{T}} $$
Notes:
The tracking error is sometimes defined differently, for example as the absolute difference in returns between a portfolio and a benchmark.
The definition above corresponds to the most commonly used definition.
Let be:
- $m$, the number of factors
- $T$, the number of time periods
- $X \in \mathcal{R}^{m \times T}$, the matrix of the factors returns
The returns $R_{res, i} \in \mathcal{R}^{T}$ of the residualized factor $i \in {1..m}$ are defined as: $$ R_{res, i} {}^t = X_i - \alpha - \beta {}^t X_{-i} $$
where:
- $X_i$ represents the row $i$ of the matrix $X$
- $X_{-i}$ represents the matrix $X$ after removing the row $i$
- $(\alpha, \beta)$ is the unique solution of minimum euclidean norm of the linear least squares problem $$ \operatorname{argmin_{(\alpha \in \mathcal{R}, \beta \in \mathcal{R}^{m})}} \lVert X_i - \alpha - \beta {}^t X_{-i} \rVert_2^2 $$
Let be:
- $m$, the number of factors
- $T$, the number of time periods
- $X \in \mathcal{R}^{m \times T}$, the matrix of the factors returns
- $n_p$, the number of portfolios
- $r_p = (r_{p,1},...,r_{p,T}) \in \mathbb{R}^{T}$, the returns of the portfolio $p$, $p=1..n_p$
The exposures $\beta_p \in \mathcal{R}^{m}$ of the $p$-th portfolio to the $m$ factors, $p=1..n_p$, are defined as the unique solution of minimum euclidean norm of the linear least squares problem:
$$ \operatorname{argmin_{(\alpha_p \in \mathcal{R}, \beta_p \in \mathcal{R}^{m})}} \lVert r_p {}^t - \alpha_p - \beta_p {}^t X \rVert_2^2 $$
Notes:
- $\alpha_p$ represents the portion of the portfolio $p$ returns that cannot be attributed to the portfolio exposure to the $m$ factors
- $\beta_{p}$ represents the magnitude of the portfolio $p$ exposure to the $m$ factors
Let be:
- $T$, the number of time periods
- $r_b = (r_{b,1},...,r_{b,T}) \in \mathbb{R}^{T}$, the returns of the benchmark
- $r_f = (r_{f,1},...,r_{f,T})\in \mathbb{R}^{T}$, the risk free returns
- $n_p$, the number of portfolios
- $r_p = (r_{p,1},...,r_{p,T}) \in \mathbb{R}^{T}$, the returns of the portfolio $p$, $p=1..n_p$
The Jensen's alpha $\alpha_p \in \mathbb{R}$ of the $p$-th portfolio, $p=1..n_p$, is defined as the intercept of the regression equation in the Capital Asset Pricing Model: $$ r_{p,t} - r_{f,t} = \alpha_p + \beta_p (r_{b,t} - r_{f,t}) + \epsilon_t $$, with $t=1..T$
Notes:
Let be:
- $T$, the number of time periods
- $r_b = (r_{b,1},...,r_{b,T}) \in \mathbb{R}^{T}$, the returns of the benchmark
- $r_f = (r_{f,1},...,r_{f,T})\in \mathbb{R}^{T}$, the risk free returns
- $n_p$, the number of portfolios
- $r_p = (r_{p,1},...,r_{p,T}) \in \mathbb{R}^{T}$, the returns of the portfolio $p$, $p=1..n_p$
The beta $\beta_p \in \mathbb{R}$ of the $p$-th portfolio, $p=1..n_p$, is defined as the slope of the regression equation in the Capital Asset Pricing Model: $$ r_{p,t} - r_{f,t} = \alpha_p + \beta_p (r_{b,t} - r_{f,t}) + \epsilon_t $$, with $t=1..T$
Notes:
Let be:
- $n$, the number of assets
- $C \in \mathcal{M}(\mathbb{R}^{n \times n})$ the correlation matrix of $n$ assets
- $C_T \in \mathcal{M}(\mathbb{R}^{n \times n})$ a target correlation matrix
- $\lambda \in [0,1]$ a real number
The (linear) shrinkage of the matrix $C$ toward the matrix $C_T$ is done through the computation of the convex linear combination: $$ C_S = (1-\lambda) C_T + \lambda T $$
Notes:
- The resulting matrix $C_S$ is a correlation matrix.
- The parameter $\lambda$ is usually called the shrinkage factor, or the shrinkage intensity, or the shrinkage constant.
- This endpoint provides three predefined target equicorrelation matrices $C_T$:
- The equicorrelation matrix made of 1, representing the maximum correlation matrix $$ \begin{bmatrix}
1 & 1 & ... & 1 \\
1 & 1 & ... & 1 \\
... & ... & ... & ... \\
1 & 1 & ... & 1
\end{bmatrix} $$
- The equicorrelation matrix made of 0, representing the minimum non-negative correlation matrix $$ \begin{bmatrix}
1 & 0 & ... & 0 \\
0 & 1 & ... & 0 \\
... & ... & ... & ... \\
0 & 0 & ... & 1
\end{bmatrix} $$
- The equicorrelation matrix made of $-\frac{1}{n-1}$, representing the minimum negative correlation matrix $$ \begin{bmatrix}
1 & -\frac{1}{n-1} & ... & -\frac{1}{n-1} \\
-\frac{1}{n-1} & 1 & ... & -\frac{1}{n-1} \\
... & ... & ... & ... \\
-\frac{1}{n-1} & -\frac{1}{n-1} & ... & 1
\end{bmatrix} $$
Let be:
- $n$, the number of assets
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
The hierarchical risk parity portfolio is a portfolio blending graph theory and machine learning techniques where similar assets are first grouped together thanks to a hierarchical
clustering algorithm and asset weights are then computed through a recursive top-down bisection of the resulting hierarchical tree.
Notes:
- There are 4 possible choices for the hierarchical clustering algorithm, influencing the way the assets are grouped together:
- Single linkage (default)
- Average linkage
- Complete linkage
- Ward's linkage
- There are 2 possible choices for the order to impose on the hierarchical clustering tree leaves, also influencing the way the assets are grouped together:
- The management of minimum and maximum asset weights constraints is a proprietary adaptation of the method described in the second reference. The general idea is that constraints are enforced
at the lowest possible level of the hierarchical tree.
Let be:
- $n$, the number of assets
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
The hierarchical clustering-based risk parity portfolio is a portfolio building on the hierarchical risk parity portfolio, where similar assets are first grouped together thanks to an early stopped hierarchical
clustering algorithm and asset weights are then computed through a recursive top-down division into two parts of the resulting hierarchical tree.
Notes:
- Early stopping the hierarchical clustering algorithm produces a hierarchical tree cut at a certain height, with assets partitioned into clusters. The number of such clusters can either be provided or can be
automatically computed thanks to the gap statistic method using as the null reference distribution of the data
the uniform distribution over the set of positive definite correlation matrices.
- There are 4 possible choices for the hierarchical clustering algorithm, influencing the way the assets are grouped together:
- Single linkage
- Average linkage
- Complete linkage
- Ward's linkage (default)
- There are 2 possible choices for the order to impose on the hierarchical clustering tree leaves, also influencing the way the assets are grouped together:
- There are 3 possible choices for the within cluster allocation method and for the across cluster allocation method:
- Equal weighting (default)
- Inverse volatility
- Inverse variance
Using Equal weighting for both cluster allocation methods corresponds to the Hierarchical Clustering-Based Asset Allocation (HCAA) of Thomas Raffinot.
- The management of minimum and maximum asset weights constraints is a proprietary adaptation of the method described in the second reference. The general idea is that constraints are enforced
at the lowest possible level of the hierarchical tree.
Let be:
- $n$, the number of assets
A random correlation matrix is a matrix $C \in \mathcal{M}(\mathbb{R}^{n \times n})$ generated uniformly at random over the space of positive definite correlation matrices,
which is defined as $$ \mathcal{E}_n = \{ C \in \mathcal{M}(\mathbb{R}^{n \times n}) : C {}^t = C, C_{i,i} = 1, i=1..n, x {}^t C x > 0, \forall x \in\mathbb{R}^n \} $$
Notes:
- This endpoint uses a computationally more efficient algorithm than the one described in the reference.
Let be:
- $n \ge 2$, the number of assets
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n \ge 0$ the eigenvalues of the matrix $\Sigma$
- $\rho_1 \ge \rho_2 \ge ... \ge \rho_n \ge 0$ the standardized eigenvalues of the matrix $\Sigma$ defined by $\rho_i = \frac{\lambda_i}{\sum_{i=1}^{n} \lambda_i}$, $i=1..n$
The effective rank of the matrix $\Sigma$ is defined as $ \textrm{erank}(\Sigma) = e^{- \sum_{i=1}^{n} \rho_i \ln(\rho_i)} $
Notes:
- In case of a null standardized eigenvalue, the convention taken is $0 ln(0) = 0$.
Let be:
- $n \ge 2$, the number of assets
- $C \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset correlation matrix
- $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n \ge 0$ the eigenvalues of the matrix $C$
- $\rho_1 \ge \rho_2 \ge ... \ge \rho_n \ge 0$ the standardized eigenvalues of the matrix $C$ defined by $\rho_i = \frac{\lambda_i}{\sum_{i=1}^{n} \lambda_i}$, $i=1..n$
The effective rank of the matrix $C$ is defined as $ \textrm{erank}(C) = e^{- \sum_{i=1}^{n} \rho_i \ln(\rho_i)} $
Notes:
- In case of a null standardized eigenvalue, the convention taken is $0 ln(0) = 0$.
Let be:
- $n_p$, the number of portfolios
- $T_p$, the number of time periods of the $p$-th portfolio, $p=1..n_p$
- $r_p = (r_{p,1},...,r_{p,T_p-1}) \in \mathbb{R}^{T_p-1}$, the arithmetic returns of the portfolio $p$ associated to the $T_p$ time periods, $p=1..n_p$
The average arithmetic return $\overline{r_p}$ of the $p$-th portfolio, $p=1..n_p$, is defined as the the arithmetic average of the arithmetic returns $r_p$: $$ \overline{r_p} = \frac{\sum_{t=1}^{T_p-1} r_{p,t}}{T_p-1} $$
Let be:
- $n_p$, the number of portfolios
- $T_p$, the number of time periods of the $p$-th portfolio, $p=1..n_p$
- $V_{t, p} \in \mathbb{R}^{+,*}$, the value of the $p$-th portfolio at the time $t$, $p=1..n_p$, $t=1..T_p$
The Ulcer Index $UI_p$ of the $p$-th portfolio, $p=1..n_p$, is defined as: $$ UI_p = \sqrt{\frac{\sum_{t=1}^{T_p} \left(100 * \left(\frac{V_{t, p}}{\max_{t'=1..t} V_{t', p}} - 1\right)\right)^2 }{T_p}} $$
Let be:
- $n_p$, the number of portfolios
- $T_p$, the number of time periods of the $p$-th portfolio, $p=1..n_p$
- $V_{t, p} \in \mathbb{R}^{+,*}$, the value of the $p$-th portfolio at the time $t$, $p=1..n_p$, $t=1..T_p$
- $r_f \in \mathbb{R}$, the value of the risk free rate
- $\overline{r_p}$, the average arithmetic return of the $p$-th portfolio, $p=1..n_p$
- $UI_p$, the Ulcer Index of the $p$-th portfolio, $p=1..n_p$
The Ulcer Performance Index $UPI_p$ of the $p$-th portfolio, $p=1..n_p$, is defined as: $$ UPI_p = \frac {\overline{r_p} - r_f}{UI_p} $$
Notes:
- The Ulcer Performance Index is also called the Martin Index, the Martin Ratio or the Return-to-Ulcer Ratio
Let be:
- $n$, the number of assets
- $T$, the number of time periods
- $P_{t,i} \in \mathbb{R}^{+,*}$, the price of the asset $i$ at the time $t$, $i=1..n$, $t=0..T$
- $r_i = (r_{1,i},...,r_{T,i}) \in \mathbb{R}^{T}$, the arithmetic return of the asset $i$, $i=1..n$ over each time period $t=1..T$
- $\overline{r} = \left ( \overline{r_1}, ..., \overline{r_n} \right ) \in \mathbb{R}^n$, the average arithmetic return of the assets $1..n$
- $y_t = \left ( y_{t,1}, ..., y_{t,n} \right ) \in \mathbb{R}^n$ the vector of the $n$ assets uncompounded cumulative return up to the time period $t$, defined by $y_{t,i} = \sum_{k=1}^{t} r_{k,i}$, $i=1..n$, $t=1..T$
- $r_f \in \mathbb{R}$, the value of the risk free rate
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
The maximum Ulcer Performance Index portfolio weights $w^* \in [0,1]^{n}$ satisfy:
$$ w^* = \operatorname{argmax} \frac{w {}^t \overline{r} - r_f }{UI(w)} \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$
With $UI(w)$ the Ulcer Index of the portfolio with returns $\langle w , y_t \rangle$, $t=1..T$, that is:
$$\text{UI}(w) =\sqrt{\frac{1}{T}\sum_{k=1}^{T} \left ( \max_{j = 1..k} \left ( \langle w , y_j \rangle \right ) - \langle w , y_k \rangle \right ) ^2}$$
Notes:
- The value of the risk free rate $r_f$ is usually either taken as the interest rate on a riskless asset like cash or as the interest rate on borrowings
- The Ulcer Performance Index is also called the Martin Index, the Martin Ratio or the Return-to-Ulcer Ratio
Let be:
- $n$, the number of assets
- $T$, the number of time periods
- $P_{t,i} \in \mathbb{R}^{+,*}$, the price of the asset $i$ at the time $t$, $i=1..n$, $t=0..T$
- $r_i = (r_{1,i},...,r_{T,i}) \in \mathbb{R}^{T}$, the arithmetic return of the asset $i$, $i=1..n$ over each time period $t=1..T$
- $\overline{r} = \left ( \overline{r_1}, ..., \overline{r_n} \right ) \in \mathbb{R}^n$, the average arithmetic return of the assets $1..n$
- $y_t = \left ( y_{t,1}, ..., y_{t,n} \right ) \in \mathbb{R}^n$ the vector of the $n$ assets uncompounded cumulative return up to the time period $t$, defined by $y_{t,i} = \sum_{k=1}^{t} r_{k,i}$, $i=1..n$, $t=1..T$
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
The minimum Ulcer Index portfolio weights $w^* \in [0,1]^{n}$ satisfy:
$$ w^* = \operatorname{argmin} UI(w) \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$
With $UI(w)$ the Ulcer Index of the portfolio with returns $\langle w , y_t \rangle$, $t=1..T$, that is:
$$\text{UI}(w) =\sqrt{\frac{1}{T}\sum_{k=1}^{T} \left ( \max_{j = 1..k} \left ( \langle w , y_j \rangle \right ) - \langle w , y_k \rangle \right ) ^2}$$
Let be:
- $n_p$, the number of portfolios
- $T_p$, the number of time periods of the $p$-th portfolio, $p=1..n_p$
- $V_{t, p} \in \mathbb{R}^{+,*}$, the value of the $p$-th portfolio at the time $t$, $p=1..n_p$, $t=1..T_p$
- $r_p = (r_{p,1},...,r_{p,T_p-1}) \in \mathbb{R}^{T_p-1}$, the arithmetic returns of the portfolio $p$ associated to the $T_p$ time periods, $p=1..n_p$
- $l_p = -r_p \in \mathbb{R}^{T_p-1}$, the $p$-th portfolio losses, $p=1..n_p$
- $\alpha \in [0,1]$, the confidence level
The conditional value at risk with confidence level $\alpha$, $CVaR_{\alpha}$, of the $p$-th portfolio, $p=1..n_p$, is the average of the distribution of the $p$-th portfolio losses $l_p$ over all the losses larger than the value at risk with confidence level $\alpha$.
Notes:
- The conditional value at risk with confidence level $\alpha$ answers to the following question: What is the expected loss incurred in the $\alpha$% worst cases of the portfolio?
- Typical values for $\alpha$ are 0.01 (= 1%) or 0.05 (= 5%).
- The conditional value at risk is also known as the expected shortfall or the expected tail loss.
Let be:
- $n_p$, the number of portfolios
- $T_p$, the number of time periods of the $p$-th portfolio, $p=1..n_p$
- $V_{t, p} \in \mathbb{R}^{+,*}$, the value of the $p$-th portfolio at the time $t$, $p=1..n_p$, $t=1..T_p$
- $r_p = (r_{p,1},...,r_{p,T_p-1}) \in \mathbb{R}^{T_p-1}$, the arithmetic returns of the portfolio $p$ associated to the $T_p$ time periods, $p=1..n_p$
- $l_p = -r_p \in \mathbb{R}^{T_p-1}$, the $p$-th portfolio losses, $p=1..n_p$
- $\alpha \in [0,1]$, the confidence level
The value at risk with confidence level $\alpha$, $VaR_{\alpha}$, of the $p$-th portfolio, $p=1..n_p$, is the $\alpha$-quantile of the distribution of the $p$-th portfolio losses $l_p$.
Notes:
- The value at risk with confidence level $\alpha$ is equivalently defined as the maximum portfolio loss that will not be exceeded with probability $1-\alpha$.
- The value at risk with confidence level $\alpha$ answers to the following question: What is the minimum loss incurred in the $\alpha$% worst cases of the portfolio?
- Typical values for $\alpha$ are 0.01 (= 1%) or 0.05 (= 5%).
Let be:
- $n$, the number of assets
- $\mu \in \mathbb{R}^{n}$, the vector of the asset arithmetic returns
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
The diversified maximum return portfolio weights $w^* \in [0,1]^{n}$ satisfy:
$$ w^* = \operatorname{argmin} \sum_{i=1}^{n} w_i^2 \newline \textrm{s.t. } \begin{cases} \sqrt{ w {}^t \Sigma w} \leqslant \sigma^* (1 + \delta_{\sigma}) \newline \mu^* (1 - \delta_{\mu}) \leqslant w {}^t \mu \newline l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$
where:
Let be:
- $n$, the number of assets
- $\mu \in \mathbb{R}^{n}$, the vector of the asset arithmetic returns
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $r_f \in \mathbb{R}$, the value of the risk free rate
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
The diversified maximum Sharpe ratio portfolio weights $w^* \in [0,1]^{n}$ satisfy:
$$ w^* = \operatorname{argmin} \sum_{i=1}^{n} w_i^2 \newline \textrm{s.t. } \begin{cases} \sqrt{ w {}^t \Sigma w} \leqslant \sigma^* (1 + \delta_{\sigma}) \newline \mu^* (1 - \delta_{\mu}) \leqslant w {}^t \mu \newline l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$
where:
Let be:
- $n$, the number of assets
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
The diversified minimum variance portfolio weights $w^* \in [0,1]^{n}$ satisfy:
$$ w^* = \operatorname{argmin} \sum_{i=1}^{n} w_i^2 \newline \textrm{s.t. } \begin{cases} \sqrt{ w {}^t \Sigma w} \leqslant \sigma^* (1 + \delta_{\sigma}) \newline \mu^* (1 - \delta_{\mu}) \leqslant w {}^t \mu \newline l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$
where:
Let be:
- $n$, the number of assets
- $\mu \in \mathbb{R}^{n}$, the vector of the asset arithmetic returns
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
The weights $w^* \in [0,1]^{n}$ of a diversified mean-variance efficient portfolio satisfy:
$$ w^* = \operatorname{argmin} \sum_{i=1}^{n} w_i^2 \newline \textrm{s.t. } \begin{cases} \sqrt{ w {}^t \Sigma w} \leqslant \sigma^* (1 + \delta_{\sigma}) \newline \mu^* (1 - \delta_{\mu}) \leqslant w {}^t \mu \newline l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$
where:
Let be:
- $n$, the number of assets
- $\mu_{t'} \in \mathbb{R}^{n}$, the vector of the average asset returns over a historical reference period $t'$
- $\Sigma_{t'} \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix over a historical reference period $t'$
- $r_t \in \mathbb{R}^{n}$, the vector of the asset returns over a period $t \ne t'$
The turbulence index $d_t$ of the assets over the period $t$ is defined as:
$$ d_t = \frac{1}{n} (r_t - \mu_{t'}) {}^t \Sigma{_{t'}}^{-1} (r_t - \mu_{t'}) $$
Notes:
- The turbulence index $d_t$ represents a statistical measure of financial turbulence based on the Mahalanobis distance, c.f. the first reference.
- The turbulence index $d_t$ is normalized by the number of assets $n$ so that its expected value is equal to 1, c.f. the second reference.
- The asset covariance matrix $\Sigma_{t'}$ is supposed to be invertible, that is, positive definite.
Let be:
- $n$, the number of assets
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $E_1,...,E_n$, the eigenvectors of $\Sigma$ ordered such that $\sigma_{E_1}^2 \geq ... \geq \sigma_{E_n}^2$, with $\sigma_{E_i}^2$ the variance of the eigenvector $E_i$, $i=1..n$
- $1\leq N \leq n$, the number of eigenvectors $E_1,...,E_N$ to retain in the computation of the absorption ratio
The absorption ratio $AR$ of the assets is defined as:
$$ AR = \frac{\sum_{i=1}^N \sigma_{E_i}^2}{\sum_{i=1}^n \sigma_{E_i}^2} $$
Notes:
- The absorption ratio $AR$ is an indicator of financial risk, representing the fraction of the total variance of the assets explained (or absorbed, hence its name) by a finite set of eigenvectors, c.f. the first reference.
- The denominator of the absorption ratio $AR$ is also equal to $\sum_{i=1}^n \sigma_{A_i}^2$, with $\sigma_{A_i}^2$ the variance of the $i$-th asset, $i=1..n$, which is its usual definition.
Let be:
- $n$, the number of assets
- $\mu \in \mathbb{R}^{n}$, the vector of the asset arithmetic returns
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
The subset resampling-based maximum return portfolio weights $w^* \in [0,1]^{n}$ are computed through the following procedure:
- Determine the number of assets $n_S$ to include in each subset, with $2 \le n_S \le n$
- Determine the number of subsets to generate $n_B$, with $1 \le n_B$
- For $b = 1..n_B$ do
- Generate uniformly at random without replacement a subset of $n_S$ assets from the original set of $n$ assets
- Compute the weights $w_b^*$ of the maximum return portfolio associated to the generated subset of $n_S$ assets, taking into account the applicable constraints
- Aggregate the $n_B$ portfolio weights $w_1^*,..,w_{n_B}^*$ by averaging them through the formula:
$$ w^* = \frac{1}{n_B} \sum_{b=1}^{n_B} w_b^* $$
Notes:
- The subset resampling method as described above is actually the random subspace method, an ensemble learning technique, applied to mean-variance portfolio optimization.
- It is possible to generate all the subsets of the original set of $n$ assets containing $n_B$ assets; in this case, the subset generation procedure becomes non-random.
- In case too many subset optimization problems are infeasible, typically due to weight constraints, an error is returned by the endpoint; a threshold of 5% is enforced.
- It is possible to aggregate the $n_B$ portfolio $w_1^*,..,w_{n_B}^*$ by using a robust location estimator - the geometric median - instead of the average; this procedure is described in Peter Bühlmann, Bagging, Subagging and Bragging for Improving some Prediction Algorithms.
Let be:
- $n$, the number of assets
- $\mu \in \mathbb{R}^{n}$, the vector of the asset arithmetic returns
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $r_f \in \mathbb{R}$, the value of the risk free rate
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
The subset resampling-based maximum Sharpe ratio portfolio weights $w^* \in [0,1]^{n}$ are computed through the following procedure:
- Determine the number of assets $n_S$ to include in each subset, with $2 \le n_S \le n$
- Determine the number of subsets to generate $n_B$, with $1 \le n_B$
- For $b = 1..n_B$ do
- Generate uniformly at random without replacement a subset of $n_S$ assets from the original set of $n$ assets
- Compute the weights $w_b^*$ of the maximum Sharpe ratio portfolio associated to the generated subset of $n_S$ assets, taking into account the applicable constraints
- Aggregate the $n_B$ portfolio weights $w_1^*,..,w_{n_B}^*$ by averaging them through the formula:
$$ w^* = \frac{1}{n_B} \sum_{b=1}^{n_B} w_b^* $$
Notes:
- The subset resampling method as described above is actually the random subspace method, an ensemble learning technique, applied to mean-variance portfolio optimization.
- It is possible to generate all the subsets of the original set of $n$ assets containing $n_B$ assets; in this case, the subset generation procedure becomes non-random.
- In case too many subset optimization problems are infeasible, typically due to weight constraints, an error is returned by the endpoint; a threshold of 5% is enforced.
- It is possible to aggregate the $n_B$ portfolio $w_1^*,..,w_{n_B}^*$ by using a robust location estimator - the geometric median - instead of the average; this procedure is described in Peter Bühlmann, Bagging, Subagging and Bragging for Improving some Prediction Algorithms.
Let be:
- $n$, the number of assets
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
The subset resampling-based minimum variance portfolio weights $w^* \in [0,1]^{n}$ are computed through the following procedure:
- Determine the number of assets $n_S$ to include in each subset, with $2 \le n_S \le n$
- Determine the number of subsets to generate $n_B$, with $1 \le n_B$
- For $b = 1..n_B$ do
- Generate uniformly at random without replacement a subset of $n_S$ assets from the original set of $n$ assets
- Compute the weights $w_b^*$ of the minimum variance portfolio associated to the generated subset of $n_S$ assets, taking into account the applicable constraints
- Aggregate the $n_B$ portfolio weights $w_1^*,..,w_{n_B}^*$ by averaging them through the formula:
$$ w^* = \frac{1}{n_B} \sum_{b=1}^{n_B} w_b^* $$
Notes:
- The subset resampling method as described above is actually the random subspace method, an ensemble learning technique, applied to mean-variance portfolio optimization.
- It is possible to generate all the subsets of the original set of $n$ assets containing $n_B$ assets; in this case, the subset generation procedure becomes non-random.
- In case too many subset optimization problems are infeasible, typically due to weight constraints, an error is returned by the endpoint; a threshold of 5% is enforced.
- It is possible to aggregate the $n_B$ portfolio $w_1^*,..,w_{n_B}^*$ by using a robust location estimator - the geometric median - instead of the average; this procedure is described in Peter Bühlmann, Bagging, Subagging and Bragging for Improving some Prediction Algorithms.
Let be:
- $n$, the number of assets
- $\mu \in \mathbb{R}^{n}$, the vector of the asset arithmetic returns
- $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$, the asset covariance matrix
- A return constraint $r_c$, a volatility constraint $v_c \geq 0$ or a risk tolerance constraint $\lambda_c \geq 0$
- $l \in [0,1]^{n} $, the optional minimum asset weights constraints
- $u \in [0,1]^{n} $, the optional maximum asset weights constraints
- $w_{min} \in [0,1]$, the optional minimum portfolio exposure
- $w_{max} \in [0,1]$, the optional maximal portfolio exposure
- $k$, the optional number of groups of assets
- $G \in \mathcal{M}(\mathbb{R}^{k \times n})$, the optional assets groups matrix defining $k$ group(s) of assets
- $u_g \in \mathbb{R}^{k}$, the optional maximum assets groups weights constraints
The weights $w^* \in [0,1]^{n}$ of a subset resampling-based mean-variance efficient portfolio are computed through the following procedure:
- Determine the number of assets $n_S$ to include in each subset, with $2 \le n_S \le n$
- Determine the number of subsets to generate $n_B$, with $1 \le n_B$
- For $b = 1..n_B$ do
- Generate uniformly at random without replacement a subset of $n_S$ assets from the original set of $n$ assets
- Compute the weights $w_b^*$ of a mean-variance efficient portfolio associated to the generated subset of $n_S$ assets, taking into account the applicable constraints
- Aggregate the $n_B$ portfolio weights $w_1^*,..,w_{n_B}^*$ by averaging them through the formula:
$$ w^* = \frac{1}{n_B} \sum_{b=1}^{n_B} w_b^* $$
Notes:
- The subset resampling method as described above is actually the random subspace method, an ensemble learning technique, applied to mean-variance portfolio optimization.
- It is possible to generate all the subsets of the original set of $n$ assets containing $n_B$ assets; in this case, the subset generation procedure becomes non-random.
- In case too many subset optimization problems are infeasible, typically due to return, volatility or weight constraints, an error is returned by the endpoint; a threshold of 5% is enforced.
- It is possible to aggregate the $n_B$ portfolio $w_1^*,..,w_{n_B}^*$ by using a robust location estimator - the geometric median - instead of the average; this procedure is described in Peter Bühlmann, Bagging, Subagging and Bragging for Improving some Prediction Algorithms.