Portfolio Optimizer

The base URL of Portfolio Optimizer is: https://api.portfoliooptimizer.io/.

The current version number of Portfolio Optimizer is v1.

Portfolio Optimizer can be used:

Let be:

The arithmetic return $R_{t,t+1,i}$ of the asset $i$ from the time $t$ to the time $t+1$ is defined as $$R_{t,t+1,i} = \frac{P_{t+1,i} - P_{t,i}}{P_{t,i}}, i=1..n, t=1..T-1$$

Let be:

The covariance matrix $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$ of the $n$ assets is defined by: $$\Sigma_{i,j} = \sigma_i \sigma_j C_{i,j}, i=1..n, j=1..n$$

Let $\Sigma \in \mathcal{M}(\mathbb{R}^{n \times n})$ be a matrix.

$\Sigma$ is a covariance matrix of $n$ assets if and only if:

Let be:

The assets correlation matrix $C \in \mathcal{M}(\mathbb{R}^{n \times n})$ is defined by: $$C_{i,j} = \frac{\Sigma_{i,j}}{\sigma_i \sigma_j}, i=1..n, j=1..n$$

Let $C \in \mathcal{M}(\mathbb{R}^{n \times n})$ be a matrix.

$C$ is a correlation matrix of $n$ assets if and only if:

Let $A \in \mathcal{M} \left( \mathbb{R}^{n \times n} \right)$ be an approximate correlation matrix (i.e., a matrix with no specific requirements)

Let be:

The nearest correlation matrix $C$ to the matrix $A$ is the solution of the problem: $$ C = \operatorname{argmin} \left\Vert X - A \right\Vert_F \text{ s.t. } X \in S_n^\delta \cap \mathcal{E}_n $$

Notes:

Let be:

Additionally, let be:

Then: $$ V_{t, p} = V_{1, p} \sum_{i=1}^{n} w_{p,i} \frac{P_{t,i}}{P_{1,i}}, p=1..n_p, t=1..T $$

Notes:

Let be:

Additionally, let be:

Then: $$ V_{t, p} = V_{t-1, p} \sum_{i=1}^{n} w_{p,i} \frac{P_{t,i}}{P_{t-1,i}}, p=1..n_p, t=2..T $$

Notes:

Let be:

Additionally, let be:

Then: $$ V_{t, p} = V_{t-1, p} \sum_{i=1}^{n} w_{t-1,p,i} \frac{P_{t,i}}{P_{t-1,i}}, p=1..n_p, t=2..T $$

with $w_{t, p} \in [0,1]^{n}$ the vector of the $p$-th portfolio weights at the time $t$, $p=1..n_p$, $t=1..T$, generated at random and satisfying: $$ \begin{cases} 0 \leqslant w_{t,p,i} \leqslant 1, i = 1..n \newline \sum_{i=1}^{n} w_{t,p,i} = 1 \end{cases} $$

Notes:

Let be:

The arithmetic return of the $p$-th portfolio, $p=1..n_p$, is defined as: $$ \mu {}^t w_p $$

Alternatively, let be:

The arithmetic return of the $p$-th portfolio, $p=1..n_p$, is defined as:$$ \frac{V_{T_p,p} - V_{1,p}}{V_{1,p}}$$

Let be:

The volatility of the $p$-th portfolio, $p=1..n_p$, is defined as: $$ \sqrt{ w_p {}^t \Sigma w_p} $$

Let be:

The Sharpe ratio of the $p$-th portfolio, $p=1..n_p$, is defined as: $$ \frac{ \mu{}^t w_p - r_f}{\sqrt{ w_p {}^t \Sigma w_p }} $$

Alternatively, let be:

The Sharpe ratio of the $p$-th portfolio, $p=1..n_p$, is defined as: $$ \frac{\mu_p - r_f}{\sigma_p} $$

Let be:

The Diversification ratio of the $p$-th portfolio $p=1..n_p$, is defined as: $$ \frac{ \sigma{}^t w_p}{\sqrt{ w_p {}^t \Sigma w_p }} $$

Let be:

The return contribution of the $i$-th asset to the return of the $p$-th portfolio, $i=1..n$ and $p=1..n_p$, is defined as: $$ w_{p,i} \mu_i $$

The return contribution of the group of assets $\mathcal{N}_{p,k}$ to the return of the $p$-th portfolio, $k=1..n_{p,k}$ and $p=1..n_p$, is defined as: $$ \sum_{j \in \mathcal{N}_{p,k}} w_{p,j} \mu_j $$

Notes:

Let be:

The risk contribution of the $i$-th asset to the risk of the $p$-th portfolio, $i=1..n$ and $p=1..n_p$, is defined as: $$ w_{p,i} \frac{(\Sigma w_p)_i}{\sqrt{w_p {}^t \Sigma w_p}} $$

The risk contribution of the group of assets $\mathcal{N}_{p,k}$ to the risk of the $p$-th portfolio, $k=1..n_{p,k}$ and $p=1..n_p$, is defined as: $$ \sum_{j \in \mathcal{N}_{p,k}} w_{p,j} \frac{(\Sigma w_p)_j}{\sqrt{w_p {}^t \Sigma w_p}} $$

Notes:

Let be:

The continuous mean-variance efficient frontier is the (infinite) set of portfolios whose weights $w \in [0,1]^{n}$ satisfy: $$ w = \operatorname{argmin} \frac{1}{2} w {}^t \Sigma w - \lambda \mu {}^t w \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$ with $\lambda$ a parameter varying in $[0, +\infty[$.

Additionally, let be:

The discretized mean-variance efficient frontier is the (finite) set of $n_p$ portfolios belonging to the continuous mean-variance efficient frontier with equally spaced arithmetic returns.

Notes:

Let be:

The continuous mean-variance minimum variance frontier is the (infinite) set of portfolios whose weights $w \in [0,1]^{n}$ satisfy: $$ w = \operatorname{argmin} \frac{1}{2} w {}^t \Sigma w - \lambda \mu {}^t w \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$ with $\lambda$ a parameter varying in $]-\infty, +\infty[$.

Additionally, let be:

The discretized mean-variance minimum variance frontier is the (finite) set of $n_p$ portfolios belonging to the continuous mean-variance minimum variance frontier with equally spaced arithmetic returns.

Notes:

Let be:

Additionally, let be:

The $p$ vectors of portfolio weights $w_p \in [0,1]^{n}$, $p=1..n_p$, are generated at random and satisfy: $$ \begin{cases} l \leqslant w_p \leqslant u \newline w_{min} \leqslant \sum_{i=1}^{n} w_{p,i} \leqslant w_{max} \end{cases} $$

Let be:

The mimicking portfolio weights $w \in [0,1]^{n}$ satisfy: $$ w = \operatorname{argmin} \frac{1}{T} \lVert w {}^t X - r_b \rVert_2^2 \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$

Notes:

Let be:

The equal-weighted portfolio weights $w \in [0,1]^{n}$ satisfy: $$ w_i = \frac{1}{n}, i=1..n$$

Let be:

The inverse variance-weighted portfolio weights $w \in [0,1]^{n}$ satisfy: $$ w_i = \frac{1/\sigma_i^2}{\sum_{j=1}^{n} 1/\sigma_j^2}, i=1..n$$

Let be:

The inverse volatility-weighted portfolio weights $w \in [0,1]^{n}$ satisfy: $$ w_i = \frac{1/\sigma_i}{\sum_{j=1}^{n} 1/\sigma_j}, i=1..n$$

Let be:

The market capitalization-weighted portfolio weights $w \in [0,1]^{n}$ satisfy: $$ w_i = \frac{mktcap_i}{\sum_{j=1}^{n} mktcap_j}, i=1..n$$

Let be:

The equal Sharpe ratio contributions portfolio weights $w \in [0,1]^{n}$ satisfy: $$ \begin{aligned} & w_i \frac{\mu_i - r_f}{\sqrt{ w {}^t \Sigma w}} = w_j \frac{\mu_j - r_f}{\sqrt{ w {}^t \Sigma w}} \quad \forall i,j \quad \textrm{such that} \quad \mu_i - r_f > 0 \quad \textrm{and} \quad \mu_j - r_f > 0 \cr & w_i = 0, \quad \forall i \quad \textrm{such that} \quad \mu_i - r_f \leq 0 \end{aligned} $$

Let be:

The maximum return portfolio weights $w \in [0,1]^{n}$ satisfy: $$ w = \operatorname{argmax} w {}^t \mu \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$

Notes:

Let be:

The minimum variance portfolio weights $w \in [0,1]^{n}$ satisfy: $$ w = \operatorname{argmin} w {}^t \Sigma w \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$

Notes:

Let be:

The equal risk contributions portfolio weights $w \in [0,1]^{n}$ satisfy: $$ w = \operatorname{argmin} \sqrt{ w {}^t \Sigma w} - \frac{\lambda}{n} \sum_{i=1}^{n} \ln(w_i) \newline \textrm{s.t. }l \leqslant w \leqslant u $$ with $\lambda \in \mathbb{R}^{+,*}$ a parameter to be determined such that $\sum_{i=1}^{n} w_i = 1$.

Notes:

Let be:

The maximum decorrelation portfolio weights $w \in [0,1]^{n}$ satisfy: $$ w = \operatorname{argmax} 1 - w {}^t C w \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$

Let be:

The maximum Sharpe ratio portfolio weights $w \in [0,1]^{n}$ satisfy: $$ w = \operatorname{argmax} \frac{w {}^t \mu - r_f }{\sqrt{ w {}^t \Sigma w}} \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$

Notes:

Let be:

The minimum correlation portfolio is a portfolio where the assets are weighted proportionally to their average correlation with each other.

In more details:

Let be:

The most diversified portfolio weights $w \in [0,1]^{n}$ satisfy: $$ w = \operatorname{argmax} \frac{w {}^t \sigma }{\sqrt{ w {}^t \Sigma w}} \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$

Let be:

A mean-variance efficient portfolio is a portfolio whose weights $w \in [0,1]^{n}$ satisfy: $$ \exists \lambda \in [0, +\infty[, w = \operatorname{argmin} \frac{1}{2} w {}^t \Sigma w - \lambda \mu {}^t w \newline \textrm{s.t. } \begin{cases} l \leqslant w \leqslant u \newline Gw \leqslant u_g \newline w_{min} \leqslant \sum_{i=1}^{n} w_i \leqslant w_{max} \end{cases} $$

The parameter $\lambda$ is usually called the risk tolerance parameter, and is determined by an additional constraint on the portfolio:

Notes:

Let be:

The investable portfolio weights $w \in [0,1]^{n}$ closest to the desired portfolio weights $w_t$ satisfy: $$ w = \operatorname{argmin} \frac{1}{2} \lVert w - w_t \rVert_2^2 \newline \textrm{s.t. } \begin{cases} w_i = \frac{k_i nl_i P_i}{TV}, k_i \in \mathbb{N}, i=1,...,n \newline k_i \neq 0 \implies k_i nl_i \geq ml_i, i=1,...,n \newline k_i \neq 0 \implies k_i nl_i P_i \geq mv_i, i=1,...,n \end{cases} $$

Unfortunately, the above optimization problem is computationally intractable due to the integer constraints, so that it is only possible to compute an approximate solution.

Notes: